Archives for posts with tag: Thorium

“Traditionel” kernekraft Se her
Thorium Se her
Hurtige reaktorer Se her
Fusions energi Se her

Red klimaet !
Vi kan (måske) gøre en virkelig indsats

Ikke med at spise mindre kød.
Nej, noget realistisk.
Noget, der måske kan redde klimaet!
Hjælp med at bringe dette forslag frem til realiteter.
Det er alvorligt ment !
Hilsner fra Thorkil Søe

– – – – For kilder og henvisninger:
– – – – Klik på det der er med gult og se om du får brugbare detaljer.
– – – – Og klik på billeder for at få fuld størrelse.

Again and again we have been told that uranium is a limit reserve.
If you look at the facts, you will soon see that it is nothing but a false claim.

The old claim

The Danish anti-nuclear organization OOA and many others described the situation as follows:
“Uranium Crisis in 10-20 years.
“World uranium amounts are not particularly large.
“OECD estimated that there is enough uranium to around the year 2000.

The realities

The industry will of course harvest the low-hanging fruits first.
And there are many “fruits on the tree”.

Let us look back

Probably out of fear of shortages France started development of “Breeders”.
Best known is the “Super Phoenix”
At this time, the anti-nuclear protest was at its high and the unfinished reactor was subject to a rocket attack.
It is easy to be wise after the event and say that this reactor was too advanced and became a disaster, at least economically.
However experience gained has been helpful in the developments to day.


  • The present price of uranium is below $260/kg
    Global proven uranium reserves, which can be utilized at this price amount to about 4.6 million tons.
    It is enough for about 170 000 TWh of electricity – only 7 years of the current total global electricity consumption rate.
  • As soon as there is a demand, new deposits are still to be found.
  • However uranium at $260/kg contributes only $7.2/MWh to the cost of electricity.
    The price of nuclear power is varying.
    Still I will say that it is about 20 % of the cost of nuclear energy.
  • Of course nuclear will remain competitive at higher uranium prices.
    Particularly, prices above $1000/kg could make uranium extraction from the ocean viable, unlocking 100-1000 times the current reserves.
    Uranium at this price level would contribute about $28/kWh to the cost of electricity.
  • Long time before this we will utilize the so-called waste and the depleted uranium just left.
    The necessary processes are known, but need refinements.
    Also here: We will pick the lowest hanging fruits first.
  • Only by unlocking the old waste, we will have access to at least 10 times more compared to what has been used until now.
  • With technology still in the pipeline, we can utilize the depleted uranium stockpiled.
    It will probably be much cheaper.
  • If everything fails, uranium can be extracted from seawater.
  • Thorium is plentiful and can be used almost 100 %
  • Now mankind will have plenty of energy for the next several 1000 years.
  • And now, we are just waiting for fusion-energy to be ready.

May be the talk about uranium-shortage should be brought back where it should be
—–øøøøøøøøøøøøøø————————- As the ghost in the bottle.


The following is nothing but scattered information that may be interesting.
As usual, we see how some “information” is contradicting.

From World Nuclear.

From The Energy Collective.

Uran og Thorium i jordskorpen

For the Swedish reactor Forsmark costs of fuel amounts to 19 % of all costs excl. tax.
These 19 % is including costs for enrichment and the production of the elements.

From Wikipedia I quote:
The cost of raw uranium contributes about $0.0015/kWh to the cost of nuclear electricity, while in breeder reactors the uranium cost falls to $0.000015/kWh.

From NucNet I quote:
Global Uranium Supply ‘More Than Adequate’ For Foreseeable Future.

The alleged scarcity of uranium may best be stopped by the following from World Nuclear:
Oversupply prompts Kazakh uranium production cut.

Spot Prices

Let me finish with the following from The Energy Collective.
Production of U.S. uranium concentrate decreased 40% between 2014 and 2016 to 2.9 million pounds U3O8 in 2016, the lowest annual total since 2005. Uranium production has been affected by falling uranium prices, with spot prices falling from $34 per pound (lb) in January 2016 to $18/lb in November, the lowest uranium spot price since May 2004.
The term U3O8 stands for 3 Uranium with 8 Oxygen. Better known as Yellow-cake.

From See Water:

It is claimed that:
There are about 4.5 billion tonnes of Uranium dissolved in the oceans and this is in balance with the even larger deposits in the bottom mud

Og.klik påb For sources and references:
Og.klik påb Click on the yellow and see if you get useful details.
Og.klik påb Click on pictures for more details.
Thorium cycle Thorium versus Coal Thorium is, as elsewhere mentioned, actually not radioactive.
But by absorbing one of the neutrons, subsequently formed in the process, it will transform into an uranium isotope, which by itself is a useful fuel in nuclear reactors.
Beter than what is used today.

A reactor based on thorium must therefore be started with a temporary neutron source.

India, apparently, works on a further development, where existing technology is being modified.
Using water as a moderator.
More later.

In China, and in other countries, another approach is followed.
Here, the thorium fuel is dissolved in molted salt.
Along with great benefits, obviously, there are new challenges.

Here it is necessary to go a little bit into details with the technical.

  • Neutrons (the small blue on the sketch) are the “cornerstone” in all processes involving nuclear power.
  • BUT
    The neutrons that are formed in the core processes are fast – some
    10% of the speed of light – and must be slowed down (moderated) before they can carry the process forward.
  • Therefore a moderator is used.
    In almost all reactors this moderator is water.
    This water will, besides being a moderator, also be the medium to carry the heat forward to the turbines.
    As with ordinary (coal-fired) power plants, the water will be under pressure.
  • At nuclear power plants this will require a strong containment to withstand the pressure.
    This containment, that holds the nuclear reactions, is close to
    300 tonnes and is usually cast (pressed) in one piece.
    This, of course, is a major challenge, both technically and economically.

Sometimes we talk about “fast reactors”.
However, it is not the reactor that is fast but the neutrons that form part of the process that are fast – not moderated.
These reactors are different from ‘alt the other’ and should be cooled with liquid metal, eg. sodium.
Test Reactors can be found in many countries.
Although, for the time being, it is mostly a theoretical possibility, there are many indications that it will turn out to be the “energy source of the future”.

  • If the fuel is dissolved in molten salt and graphite is used as a moderator, the process does not have to be under pressure.
    Perhaps a weak vacuum.
    Thus, you can avoid the huge and expensive pressure vessel.

Neither thorium nor molten salt is something new. It has been tested several places successfully.
Although molten salt works well together with thorium, we should not forget that thorium can be used without molten salt and molten salt can be used without using thorium.

  • As we have got better understanding of the processes that underlie nuclear power and have got completely different computers, it is now possible to simulate a much better design.

NixonOn Oak Ridge Laboratory in Tennessee,
a four-year trial ran without problems
but was stopped by Nixon.
It is alleged that he was more interested in nuclear bombs.

Atombombe Eksploderer

Countless articles in the media and at
the internet provide long explanations and highlights the enormous advantages, while there are few objections.
Most speaking about the many and
long-term trials that will be necessary.

Of course, you also see the usual protests that testify to inability or lack of decier to communicate the facts.

Nuclear power utilizing thorium in connection with molten salt differs fundamentally from the well-known uranium utilization design.

  • As already mentioned, there will be no need to keep the nuclear processes under pressure.
    Besides the savings, it will open up for many other benefits.
  • As the fuel is already liquid, there is no risk of a nuclear meltdown, which, although often trumped in the media, does not have to be anything, but an economic disaster.
  • On the other hand, reactors based on molten salt will be “naturally safe” and have “passive safety”.
    This means that there is no need, other than gravity, to let the fuel run down to a safe position in case of an overheating.
  • As mentioned elsewhere, known reserves of thorium are significantly larger than known reserves of uranium.
    This, along with the 100% utilization of thorium, means that there will be ample and cheap energy for thousands of years.
  • Not only will thorium-based reactors be more effective.
    They will also be able to utilize existing waste from uranium-based reactors.
  • If you have a look at the numbers and remember that, what is referred to as being waste, still contains aprox. 95% of the original energy.
    This waste, along with the depleted uranium that is also waiting for being used, will, along with what is certainly on its way, be able to deliver a lot of energy for perhaps hundreds of thousands of years.

Of course, new and expensive experimental facilities will be needed.
Perhaps most to find suitable materials and not so much to control the nuclear processes.
It has even been proposed to use ceramic materials.

Such a reactor should last for 60 years, as long as the known uranium based reactors.
Thus, it can not be ruled out that investors feel that large amounts have already been invested in developing uranium-based reactors and that NOW, finally, all the childhood diseases have been overcome.
“What we have, this we know, it works well – There is cheap uranium for a few hundred years – Why suddenly start something new?”

Nevertheless, the development has started to come.

Air pollution China - Far beyond the sea

  • In China, where air pollution reaches far beyond out to the ocean, one desperately needs pollution-free energy.
    In addition to a very comprehensive program for ‘traditional nuclear power’, new research, supported by Bil Gates, work is going on for a more advanced design with molten salt.
  • In Europe, it may have been seen that you can not continue with “just so” to sit on your hands and wait.
    Apparently, one will try to pile the efforts together and work on a project based on Thorium in connection with liquid salt: SAMOFAR

In India there are large deposits of thorium.
Here you started using thorium in connection with the further development of known design.
Here a mixture of thorium and uranium is used in an existing reactor type that has been modified for the purpose.
Even though there is a long way to go before reaching a goal, one can believe that the target is within range.

Of course, the devil is found in the detail and apparently there are unbelievably many, almost unknown, details that need to be kept track of.
A link: “Introduction of Thorium in the Nuclear Fuel Cycle (2015)” with
133 pages give a terrifying impression.
In addition, there are countless patents that can not be circumvented.

In Norway you see smal steps forward.

Mr. Niels Bohr.jpg
In my country, Niels Bohr’s homeland, everything related to nuclear has been naughty words.
Still work is going on to clarify opportunities and challenges associated with a modular construction of small reactors that can be manufactured centrally and ready assembled where deemed necessary.
This will mean that small reactors can become “off the shelf” that, after use, can return to the supplier
for upgrfor upgradifor ufor upgrading or recycling.

Thorium er Fremtiden
There are good deposits of Thorium in Greenland and in Norway.
Therefore it is tempting to say that in Denmark we should go ahead and become a pioneer for cheap and pollution-free energy that does not depend on changing sun and wind.
Especially in Denmark there has been built up a strong public sentiment against nuclear power.
Although this resistance is based on extremely dubious arguments, it must be faced that, apart from importing electricity, nuclear power based on uranium will be a very long way off.
Thus, it would seem logical to wait until “the other” (China) has developed commercial use of thorium.

It is to be hoped that it will not last too long and that the enthusiastic
“No No No people” do not succeed to ruin also this obvious opportunity for cheap and clean energy.


This blog can only be seen as an addition to something else I’ve written with the aim of eliminating some of the erroneous “information” and tenacious myths that have arisen about nuclear power.

It has not been my intention to cover more than a minor part of the enormous opportunities opening up for the use of thorium in future energy supply.
As I, in no way, have more than ordinary skill in the area, I would be grateful for bug fixes and suggestions for changes.
Write to me at

Yours impatiently waiting
Thorkil Søe.

Last words

A bit pessimistic, it is said that we write too much but do too little.
Of course, Greenpeace is busy explaining that it will never work.
Apparently, this link gives a good overview of the many challenges that, as mentioned, mostly focus on materials and chemistry.
A long and very thorough assessment can be found here.

Illustrated Science

As can be expected, there are interesting – and optimistic – articles in Illustrated Science.
– – – From REO’s archive: (No. 3 2012.)
– – – An “argumentative” and seemingly realistic article
– – – page 48 to 55 in no. 13 2016: “T-Force yes thank you”


The Future

A lot of research is going on in different countries.
Apparently to get closer to an understanding of the many challenges.
Click on the pictures below to get full size.

As already mentioned, we see many different proposals.
All hoping to come forward with the magic “Silver Bullet”.
The drawing to the left shows a Danish design.
The graph to the right will – hopefully – describe the development.

Thorium - DK.png

Udviklingsaser for Thorium

englandEnglish translation.
For kilder og henvisninger:
Klik på det der er med gult og se om du får brugbare detaljer.
Og.klik påb Og klik på billeder for at få fuld størrelse.

Thorium cycle Thorium versus Coal
Thorium er, som nævnt andetsteds, i realiteten ikke radioaktivt.
Men ved at absorbere en af de neutroner, der efterfølgende dannes i processen, vil det omdanne sig til en uranisotop, som i sig selv er et nyttigt brændstof i atomreaktorer.
Bedre end det, der anvendes i dag.

Indien arbejder tilsyneladende på en videreudvikling, hvor eksisterende teknologi ændres.
Her bruges vand som moderator.
Mere senere.

I Kina og andre lande følges en anden udvikling.
Her opløstes thoriumbrændstoffet i smeltet salt.
Sammen med store fordele er der naturligvis nye udfordringer.

Her er det nødvendigt at gå lidt ind i detaljer med den tekniske.

  • Neutroner (de små blå på skitsen) er “hjerteblodet” i alle processer, der involverer atomkraft.
  • De neutroner, der dannes i kerneprocesserne, er hurtige – sådan
    10% af lyshastigheden – og skal bremses (modereres), før de kan føre processen videre.
  • Dertil bruges en moderator.
    I næsten alle reaktorer er denne moderator vand.
    Som med almindelige kulfyrede kraftværker vil vandet være under tryk.
  • På kernekraftværker kræver dette en stærk indeslutning for at modstå trykket.
    Denne indeslutning, der omslutter atomreaktionerne, vejer tæt på
    300 tons og er normalt støbt (presset) i et stykke.
    Dette er selvfølgelig en stor udfordring, både teknisk og økonomisk.

Nogle gange taler man om “hurtige reaktorer”.
Det er imidlertid ikke reaktoren, der er hurtig, men de neutroner, der indgår i processen, der er hurtige – ikke modererede.
Disse reaktorer adskiller sig atter fra ‘alt det andet’ og skal køles med flydende metal, f.eks. natrium.
Hurtige reaktorer, og reaktorer der danner nyt brændsel fra affald, kom på tale da man troede at verdens reserver af uran var meget begrænsede.

Alligevel fortsætter udviklingen og Test Reaktorer findes i mange lande.
Selv om det for øjeblikket mest er en teoretisk mulighed, er der mange tegn på, at det vil vise sig at blive “fremtidens energikilde”.

  • Hvis brændstoffet er opløst i smeltet salt, og grafit bruges som moderator, behøver processen ikke at være under tryk.
    Måske et svagt vakuum.
    Således kan man undgå det store og dyre trykbeholder.

Hverken thorium eller smeltet salt er noget nyt.
Det er blevet testet flere steder med succes.
Selvom smeltet salt fungerer godt sammen med thorium, skal vi ikke glemme at thorium kan anvendes uden smeltet salt og smeltet salt kan bruges uden brug af thorium.

  • Efterhånden som vi har fået bedre forståelse for de fysiske processer, der ligger til grund for atomkraft og har helt anderledes computere, er det nu muligt at simulere sig til et bedre design.

Nixon Oak Ridge Laboratory in Tennessee, løb en fireårig prøvekørsel uden problemer men blev stoppet af Nixon.
Det hævdes, at han var mere interesseret i atombomber.
Atombombe Eksploderer

Utallige artikler i medierne og på internettet giver lange forklaringer og fremhæver de enorme fordele, mens der er få indvendinger.
Mest omhandlende de mange og
langsigtede forsøg, der bliver nødvendige.

Selvfølgelig ser man også de sædvanlige protester, der vidner om
manglende evne eller mangelende ønske om at kommunikere realiteterne.

Kernekraft, der udnytter thorium i forbindelse med smeltet salt, afviger fundamentalt fra den velkendte design.

  • Som nævnt vil der ikke være behov for at holde de nukleare processer under tryk.
    Udover besparelser, åbnes det for mange andre fordele.
  • Da brændstoffet allerede er flydende, er der ingen risiko for en kernenedsmelting, der, selvom den ofte bliver udråbt i medierne, ikke behøver at være andet end en økonomisk katastrofe.
  • På den anden side vil reaktorer baseret på smeltet salt være “naturligt sikre” og have “passiv sikkerhed”.
    Det betyder, at der ikke er behov for andet end tyngdekraften for
    at lade brændstoffet løbe ned til en sikker position i tilfælde af overophedning.
  • Som nævnt andetsteds er kendte reserver af thorium betydeligt større end kendte reserver af uran.
    Dette sammen med 100% udnyttelse af thorium betyder, at der vil være rigelig og billig energi i tusindvis af år.
  • Ikke alene vil thoriumbaserede reaktorer være mere effektive.
    De vil også kunne udnytte eksisterende affald fra uranbaserede reaktorer.
  • Hvis man kikker lidt på tallene og husker at det der normalt omtales som affald, stadig indeholder omkring 95% af den oprindelige energi.
    Dette affald sammen med det “forarmede” uran, der også venter på at blive brugt, vil sammen med det, der helt sikkert er på vej, være i stand til at levere meget energi i måske hundreder af tusinder af år.

Selvfølgelig vil nye og dyre forsøgsfaciliteter være nødvendige.
Måske er det mest for at finde egnede materialer og ikke så meget at kontrollere atomkraftprocesserne.
Det er endda blevet foreslået at anvende keramiske materialer.

En sådan reaktor skal jo holde i 60 år, lige så længe de kendte uranbaserede reaktorer.
Det kan således ikke udelukkes, at investorer føler, at store beløb allerede er investeret i at udvikle uranbaserede reaktorer, og at NU endeligt er alle barndomssygdomme overvundet.
“Hvad vi har, det kender vi, det virker fint.
Der er billigt uran til et par hundrede år.
Hvorfor pludselig starte noget nyt?”

Ikke desto mindre er udviklingen begyndt at komme.

Air pollution China - Far beyond the sea

  • I Kina, hvor luftforurening når langt ud over havet, har man desperat behov for forureningsfri energi.
  • Ud over et meget omfattende program for “traditionel atomkraft”, ser man ny forskning der bliver støttet af Bil Gates.
    Der arbejdes på et mere avanceret design med smeltet salt.
  • I Europa har man måske set, at man ikke kan fortsætte med
    “sådan bare” sidde på hænderne og vente.
    Tilsyneladende vil man forsøge at samle indsatsen og arbejder på et projekt baseret på Thorium i forbindelse med flydende salt: SAMOFAR

I Indien er der store forekomster af thorium.
Her begynder man at bruge thorium i forbindelse med en videre udvikling af kendt design.
Her anvendes en blanding af thorium og uran
i en eksisterende reaktortype, der er
modificeret til formålet.
Naturligvis er der lang vej at gå før man når et mål.
Alligevel kan man tro at målet er inden for rækkevidde.

Selvfølgelig finder man djævelen i detaljen, og tilsyneladende er der utroligt mange, næsten ukendte, detaljer, der skal holdes styr på.
Et link: “Introduktion af Thorium i Nuclear Fuel Cycle (2015)” med
133 sider giver et skræmmende indtryk.
Derudover er der utallige patenter, der ikke må omgåes.

I Norge ser man små skridt fremad.

Mr. Niels Bohr.jpg
I Niels Bohrs fædreland, hvor alt der bare lugter af atom er blevet et uartigt ord arbejdes der ihærdigt på at finde muligheder i forbindelse med en modulær konstruktion af små reaktorer, der kan fremstilles centralt og monteres, hvor det anses for nødvendigt.
WasteBurner fra det nystartede danske firma Seaborg får positiv omtale i udlandet, men en kold
skulder i Danmark.

Dette vil betyde, at små reaktorer kan blive “hyldevarer”, der efter brug kan tages tilbage til leverandøren for opgradering, genbrug eller deponering.
. Thorium er Fremtiden
Der er gode forekomster af Thorium i Grønland og i Norge.
Derfor er det fristende at sige, at vi i Danmark skal fortsætte og blive pioner for billig og forureningsfri energi, som ikke er afhængig af at skifte sol og vind.
Især i Danmark er der opbygget en offentlig stemning mod atomkraft.
Selvom denne modstand er baseret på ekstremt tvivlsomme argumenter, må det konstateres at bortset fra importeret elektricitet vil atomkraft baseret på uran være en meget fjern fremtid.
Således bliver det logisk at vente, indtil “de andre” (Kina) har udviklet kommerciel brug af thorium.

Man må håbe, at det ikke varer for længe, og at “Nej Nej Nej Folkene” ikke endnu engang vil få held til at ødelægge også denne åbenlyse mulighed for billig og ren energi.


Denne blog kan kun ses som en tilføjelse til andet, jeg har skrevet med det formål at fjerne noget af den fejlagtige “information” og de falske myter, der er opstået om atomkraft.

Det har ikke været min hensigt at dække mere end en mindre del af de enorme muligheder, der åbner for brugen af thorium i fremtidig energiforsyning.
Da jeg på ingen måde har mere end almindelig viden indenfor området, ville jeg være taknemmelig for rettelser og forslag til ændringer.
Skriv til mig på

Din utålmodigt ventende
Thorkil Søe .

Og lidt mere

Lidt pessimistisk kan det siges at vi skriver meget, men gør for lidt.
Selvfølgelig har Greenpeace travlt med at forklare, at det aldrig vil fungere.
Tilsyneladende giver dette link et godt overblik over de mange udfordringer, der som nævnt, ofte fokuserer på materialer og kemi.

En lang og meget grundig vurdering findes on American Scientist,
Volume 98. 2010

For “kvart-fagfolk” er der mange interessante oplysninger og specielt gode grafer.

Illustreret videnskab

Som det kan forventes, er der interessante, og optimistiske, artikler i Illustrated Science.
– Fra REOs arkiv: (nr. 3 2012.)
– En “argumentativ” og tilsyneladende realistisk artikel side 48 til 55 i
no. 13 2016: “T-Force ja tak”



Der forskes meget i forskellige lande.
Naturligvis for at komme nærmere til en forståelse af de mange delvis ukendte udfordringer.
Som allerede nævnt ser vi mange forskellige forslag.
Alle håber at komme frem med den magiske “Silver Bullet”.
Tegningen nedenfor til venstre viser et dansk design.
Grafen til højre vil – forhåbentlig – beskrive udviklingen.

Klik på billederne nedenfor for at få fuld størrelse.

Thorium - DK.png

Udviklingsaser for Thorium