Archives for posts with tag: Besparelser

Og.klik påb For sources and references:
Og.klik påb Click on the yellow and see if you get useful details.
Og.klik påb Click on pictures for more details.
__________________________________________________________________________
This attempt at a post is prompted by the inescapable fact that:

Electricity is the most perishable commodity that exists.

OK
We all want a stable and secure supply of El.
Of course we want it as cheaply as reasonably possible.

And we’re all together so roughly agreeing that we must do our utmost to reduce or preferably eliminate our pollution with CO2 and of course other polution.
We can also agree that there are two, almost independent challenges:

  • The instability of supply and demand.
  • How should the supply be established

Maybe we crazy around at each other because we out of bad habit mix those two things together.
Let’s try to look at instability – There is in reality a lot of consensus.
Problems relating to transport comes so almost all alone.
Problems associated with, thankfully extremely rare, sudden onset, with almost catastrophic, outcomes (with the risk of domino effect) is not discussed the following.

Instability in supply and demand.

No matter which system you choose, we must in some way or another act to maintain a stable supply.
This will not be that easy when, in the future it is desired to reduce our CO2 emissions, also from heating, by changing to the use of electricity, of course, in conjunction with heat pumps.
In addition, the goal is that our supply of electricity mainly to be based on sun and wind, which of course is not stable.

In the old days, with coal-fired power plants and the like, it was not so difficult to handle.
But it is no good continuing with our pollution.
Coal, oil, and much else must of course be eliminated.
As a result of the future, very vulnerable system – without all that much CO2 – we are slowly approaching to a situation where we say:
—————— “All hands to the pumps.”
There are many solutions, each of which will be totally inadequate, but in association has been found to work. But of course, can be done better.

We have at least the following “handles to turn on”:

  • International exchange.
  • Reserve Capacity, to be used when necessary.
  • No political limitations on the right to produce El.
  • Flexible pricing.
  • Open Prices: Everyone can see what is best here and now.

The last three are now being called ‘Smart Grit’, but is certainly neither smart or effective before it is implemented.
A Smart Grit can hardly be effective unless the many existing distorting arrangements are settled.

It will be difficult

We have to abandon old stereotypes.
Here we might disagree: Competition or top-down?
OK
One can well. Some 30 years ago it was technically possible to make what we spend so much time speaking so much about, but still will not do – not fully and completely:

Approximately following was outlined:

  • The supply system, it is often called the grid, will at any time set the current price (spot price) for the El traded. (Not only by international trade)
  • Prices vary stepwise by a factor of 1.20 or “20% up or down” for each step (Small enough to avoid sudden ‘shock in the net’)
  • Some prices are very low. Nearly: ‘Just give it away’.
    (Used by overproduction)
  • At other times, prices can be very high.
    (Used only in the case of near disaster)
  • Anyone can buy and sell without political constraints.
  • The network buys El for 80% of what it is to sell.
    (There should be something to cover costs – both maintenance and improvements)
  • Private suppliers and consumers can always see the spot price for the El, and can of course use automatics that exploit variations in the price.
  • The network guarantees, within wide limit,s how much time, on average, the spot prices will be of different levels.
    (Consumers and producers must be able to plan – Partially)
  • The weather forecast disclose the expected price of El

Then, the human ingenuity and resourcefulness will determine what might be done.
Of course everything will be considered on an economic weight that will hatch all the weeds from.

A little more today

Today you’d probably have added:

  • The tax for pollution should be imposed on polluters compared to how much CO2 and other is discharged.
    Thus, for example, coal with CCS (Carbon Capture Storage) could gain a competitive advantage if this ‘Storage’ can be said to be persistent.
    If policymakers want to be “More Green”, it will ‘just’ be enough to increase this tax.
  • As long as the quota system is maintained, quotas for CO2 should not be distributed as a kind of gift to the old established polluters, who ‘smart enough’ can sell and obtain profits based upon old sins.
    Quotas should be purchased on completely equal terms, in a sort of a CO2-pool. (Ideally internationally)
  • Political favoritism of special productions should be abandoned as swiftly as possible. (Existing contracts must obviously be respected)
  • Taxes distributed fairly equally.
    Not per kWh but compared to net payment.
    (Without political favoritism of specific forms of production but favoring the conscious consumer.)
  • Distortion from the old rules should be settled – Not too slowly.
  • International competition is presumably to be countered by offsets, which must not get out of hand.
  • Grants for experimentation and creation of new forms of supply must be limited and must under no circumstances degenerate into an almost permanent pillow for inefficiency.
  • Keep the discussion away from discussing electric vehicles, wind and sun versus nuclear, wave energy, biomass and everything else.
    This is certainly not irrelevant to the discussion. But it should not destroy a meaningful dialogue on this matter.
  • The political situation will determine if ‘society’ or ‘net’ should continue to maintain extra back-up-capacity.

And what can be supposed to be a triviality:

  • Equal conditions for different power sources.
  • No political emphasized taxes. As where Germany and Sweden have special taxes on nuclear power.
  • No politically motivated closure of power plants.
  • Long and irrevocable agreements that enable long-term contracts and predictable private investment.

The human and political inertia has been great and it is perhaps even more.

Cogeneration and Heat Pump

At a very early stage Denmark took the lead and developed the world’s most efficient combined heat and power, so that the waste heat from the many voracious power plants did not go to waste.

And now some 60% of Danish households are equipped with various types of district heating. This figure is on the rise.

But there are indications that the development is overtaking this solution.
Today, heat pumps are so efficient that, without political favoritism, it will be a serious competitor to the district heating.
One major reason for this is that it is much easier to distribute electricity in the wires than heat pipes.
By pure electricity (without heating) it is now possible to ‘squise the last kW out of fuel’ when electricity is generated by combustion in thermal plants. (You can get about 10% more).
But at the same time the waste heat will not be in the form of the nearly 100 degree hot water, which is now used for district heating. Instead, you just get some ‘warm water’ that is not suitable for the old district heating, but still can be used as a heat source for heat pumps, for fish farms or horticulture.
As development progresses, until the old district heating pipe is worn, it will certainly be sensible so that use electricity for heat pumps with what is shown enough will call ‘cold district heating’.

Too much of the good is bad

The above considerations are basically valid as long as the varying and partly unpredictable power from solar and wind sticks to mere bagatelle and do not exceed five, maybe 10% of the load.

German solar variation From the US sunshine states we have the expression “the Duck Curve”.
First we see how the large percentage of new solar power have destroyed the original good profits in 2012.
Then one asks:
Who provides backup in the early hours of the night?
Finally we see, what we already knew, that in the US pricing is (partially) governed by market forces.

In Germany, which mainly focuses on solar energy (PV), the situation is most a future challenge.
BUT with the desired phase out coal and nuclear power would appear to be impossible to maintain the supply.
Germany has reached “The Bureaucracy Monster”:
From Der Spiegel October 2013 quoted:
“And let’s not forget that the German bureaucrats to have come up with more than 4,000 different subsidy categories for renewable energy, apparently adhering til principle att what is particular expensive kill two be lavishly subsidized.”

All beginnings are difficult

It would be naive to think that the ‘smart grid’ just emidiately can change consumption pattern, the ‘ordinary people’.

It will take time and even political courage.
Politicians and officials must free themselves from the last level economic conventional thinking.
Manufacturers must develop automation for management, effective gauges and much more.
BUT
Let’s get started.
What the hell are we waiting for?

Yours Thorkil Søe
thorkilsoee@gmail.com

Postscript

There are apparently something about to happen: On the island Bornholm a pilot project is underway.
Although little is better than nothing, it has unfortunately been found that it does not become neither fish nor fowl before all manufacturers of EL are subject to market conditions.

The later development

Despite all good intensions, developments strongly suggests that the European energy system is in the process of working itself into a dead end.
I have tried to gather some of the many data and information in a different post.
Unfortunately, it will be difficult to achieve a free market for electricity and heat without making up with decades of opposition to nuclear (nuclear power) and a systematic demonization.

Hostile action

One possible unresolved challenge can be the destruction of the system by means of false signals transmitted in the intention to attack the infrastructure. (Cyberattack)
If this is to be counteracted, it will probably be necessary to exclude immediate major changes in tariffs and thus could not relieve the system by any outcome of larger units.

Thank you

Thanks to Søren Fosberg for words of encouragement and suggestions for changes.
And to Sören Kjärsgaard for his extreemely good work.

http://www.theenergycollective.com/aqgilbert/2382456/solar-to-wreck-economics-of-existing-power-markets

Det grønne mål

For Greenpeace og andre “Grønne Ordinationer” er det et mål at Europa – Og helst hele verden – skal omlægge sit energisystem fra Kul og Kernekraft til hovedsageligt Sol og Vind.
Begrundelsen er et ønske om at reducere udledningen af drivhusgasser og et fastgroet ønske om at undgå kernekraft.

På europæisk plan – ja måske på verdensplan – er det Danmark og Tyskland, der prøver at være foregangslande for denne omstilling. Danmark med vindkraft, som det bærende element og Tyskland med solenergi (PV)

Men hvordan?

Med mindre jeg har overset noget væsentligt, har hverken Danmark eller Tyskland offentliggjort andet end luftige hensigtserklæringer til at beskrive det ønskede fremtidige energisystem.
Tilsyneladende tales der meget lidt om den egentlige udfordring:
Pris og Forsyningssikkerhed.

I årevis har Danmark arbejdet på ”den store grønne omstilling” uden at give andre oplysninger end det sædvanlige:
”Vi er på vej” og “Se hvor langt vi er kommet”.
Tyskland, der kun lige er begyndt, har naturligvis en bedre undskyldning for manglende oplysninger.

For Danmark har jeg sammenfattet det jeg tror at vi, som borgere, har
krav på at vide. Se her.

For det tyske energiewende er der meget, der tyder på at de uløste udfordringer er ved at hobe sig op.

Men lige meget hvad. I mangel af rimelige oplysninger, ja så vil jeg prøve.

Lagring af energi.

Under forudsætning af målsætningen (Næsten al energi skal være VE)
vil der være tale om meget store energimængder:

Realistiske muligheder

Lagring af store energimængder kan, med nuværende teknik, kun ske med reguleret vandkraft, hvor der efter behov kan der åbnes eller lukkes for slusere.
Eller pumped storage hvor overskudskraft bruges til op-pumpning af vand.

Udover det, der bedst kan betegnes som småting, er der kun nye muligheder i Norge og ved et eventuelt “Mega-stort” anlæg ved Great Glen i Skotland.
Ved nøjere eftersyn viser det sig at være en dråbe i havet.
Både Tyskland og England bejler til norsk vandkraft, der trods alt er begrænset.
Great Glen er trods alt langt væk. For øvrigt forudsættes at der pumpes saltvand op i en ferskvandssø.

Behov

Danmarks vinterbehov vil være omkring 10.000 MW
Det tyske nok ti gange så meget.

Det har ikke været muligt for mig at finde en realistisk vurdering af den tid Europa (mest Tyskland og Danmark) skal klare forsyningen udelukkende med backup.
Det vil kræve analyse af metrologiske data, der burde være tilgængelige. Således må man atter nøjes med mit skøn.

Naturligvis skal man vurdere ”værst tænkelige situation” kombineret med alt det der hjælper til at afbøde situationen.
Mit forsigtige gæt er tyve dage med 50 % behov.
For Tyskland alene vil det betyde:
20 dage @ 24 timer x 100.000 MW x 50 % = 24 TWh.
Dette alene ville beslaglægge 30 % af kapaciteten af de norske vandmagasiner.
Her må det huskes at kun en mindre del af disse vandmagasiner er med reguleret vandkraft og meget få med pumped storage og at det kræver specielle naturforhold for at installere yderligere pumped storage.
Her er der ikke taget hensyn til udjævning af årstidsvariationer.

Vandkraft

Desværre må man konstatere at de fleste egnede lokaliteter er udnyttede.

Solceller

I vinterhalvåret, hvor der er mest behov for kraft vil det kræve et næsten uhørt antal solceller for at opfylde ønsket om at dække forsyningen i Tyskland.
Desværre må hovedparten af disse solceller sættes ud af drift i sommerhalvåret. Hvis ikke vil overproduktion ødelægge nettet.

Hvis man ‘sådan bare’ vil hente backup baseret på sol, skal det hentes i Kina om morgenen, fra Mexico om aftenen og fra Nordafrika en overskyet vinterdag.

Vindkraft

Arealbehov for vindmøller har vist sig at være omtrent 350 km^2/GW nominel kapacitet.
For at dække Danmarks behov, der naturligvis også skal inkludere backup, skal der installeres omkring 25 GW, der vil beslaglægge små 9.000 km^2, der er 1,2 % af Nordsøens areal.
Der skal naturligvis være plads til andre lande og der også skal tages hensyn til skibsfart, olieplatforme, havdybder og bundforhold.
Måske bliver der trængsel.
I hvert fald i den tyske del.

Affald og træflis

Mængden af brugbart affald er trods alt begrænset.
Verdensmarkedet kan umuligt dække brug af træflis i samme målestok som det bruges i Danmark.

Hvis affald og træflis skal gemmes og være til rådighed som backup vil der naturligvis blive behov for flere ekstra anlæg, der ‘sådan bare’ skal stå og vente på at være nødvendige.
Det vil også blive nødvendigt at have lagerplads for store mængder affald, træflis og hvad man ellers finder på.

Backup

Foreløbigt kan Danmark holde skindet på næsen fordi vi kan få hjælp fra Sverige (kernekraft) og specielt fra Norge (vandkraft)

Til gengæld er det mit skøn at det ikke vil blive muligt for Tyskland.

I sammenhæng med dette nævnes at forbindelsen Skagerrak 4 kostede godt € 400 millioner for 700 MW Jylland-Norge.

Konklusion

Min konklusion er at vi, og nok mest Tyskland, har rodet os ind i en håbløs blindgyde.
Hvad siger du?

Og.klik påb For sources and references:
Og.klik påb Click on the yellow and see if you get useful details.
Og.klik påb Click on pictures for more details.
__________________________________________________________________________
Og.klik påb They say Jeppe drinks.
Og.klik påb But you do not say why Jeppe drinks.

Surely this applies when you talk about nuclear energy becoming more expensive.   .

First something, apparently being facts:
When nuclear power was new and France and Sweden, together with other countries started to go nuclear.
Back then, the cost were probably half of what it today will be for the UK to get the new EPR reactors.
At the same time Korea builds and exports nuclear to the UAE at the old low prices.
China claims to be on track with the same prices and e.g. Egypt buys new nuclear power in Russia, probably because the price is lower.

WHY?
Unfortunately, most players keep their cards close to the chest and it is difficult to get reliable information.
Thus we must be satisfied with the following:
– Cheapest nuclear power from an ‘old system’ (Sweden): € 26/MWh
– Cheapest nuclear power from new power plants (Korea): € 27/MWh
– Most expensive new nuclear power (Hinkley Point C): € 124/MWh
– Russia: Offer to Eastern Europe (2017) 50 €/MWh

About Korea:
World Nuclear states that the price is 3,500 €/kW (electrical capacity)
This is almost twice what appears on the graph further down the page.
It can be assumed that the price was relatively lower both because funding was not a problem and because labor is cheap in the Emirates.
But this certainly does not lift the wheel when considering the big difference.
By comparison, it is claimed that China is on its way towards 1,500 €/kW
In spite of the obvious success, the Korean government (2017 July) wants to abandon Nuclear.
About Russia:
As far as this is understood, Russian policy is providing “total offer”, which includes everything, including supply of fuel throughout the life of the plant, which is expected to reach 100 years.
Russian ROSATOM currently builds 8 nuclear power plants in Russia and 33 in other countries.
About China: Chinese nuclear power can be built in 5-6 years, and many are built.
40 until now and 20 more are under construction.
This can be done in a poor country.
About EPR, which will be built, including two in England:
From the outset, the ambitious reactor (EPR) has been a disaster with requirements for safety against near-fictional events, high budget overruns and delays.
More further down.

But still: WHY?

The following is an attempt to summarize what I think are the main reasons.

  • In what we, a bit sketchy, call the West, nuclear power became the object of hate, with never-ending  unjustified claims and demands for ever more security.
    – – – You may remember how, long time ago, it was
    – – – demanded that a man should go with a red flag in front
    – – – of cars to warn the pedestrians.
  • Instead of putting in the heels and explain that what is known and already used, nuclear has an exceptional good safety-record – based on operational data.
  • Yes, so they gave in, saying something in the direction of:
    “Well, if it is so important, then we may do this as well”.

In my opinion, this is here you planted the seeds of future catastrophic high price.

  • Before long, the opponents “smelled blood” and continued with new, completely unreasonable demands.
  • In Europe, as opposed to e.g. Korea and to some extent also the US, we have a precautionary principle:
    In such a way that as soon as you can say that something
    might be dangerous
    ,
    then it will be prohibited until it is proven that it is not dangerous.
    Except noise from windturbines.
  • This sounds somehow reassuring but can also be used to make exorbitant demands, most about 100% security against purely fictional events.
  • At the same time it puts the burden of proof on the accused and requires “negative proof”, something that, strictly speaking, is impossible.
    Requirements for 100% security are also against the laws of logic.
    But it is often made when “just being” against.
  • Although it can not be said to be relevant to the safety of future European nuclear power, the accidents at Chernobyl and later Fukushima, were highlighted and used as “evidence” that nuclear power will always be dangerous.

AND THEN

France, along with Germany, wanted to show that they were the true leaders and developed the new reactor EPR.
It should be the future reactor – Generation III

Such a single reactor will provide about as much electricity as all the Danish wind turbines TOTAL.

EPR
It should be cheaper and better.
It should be able to use
– Burn – waste from previous reactors.

In this way it is hoped to solve one of the many
non-existent problems.
.
Finland, where they needed more nuclear power, should be what turned out to be a very expensive test case. Olkiluoto-3

  • Soon you see endless delays and allegations of poor work from various subcontractors.
  • Overruns and eventually costs for sharing the responsibilities.
  • Germany had long since pulled out and the French supplier regrets bitterly.
  • In Finland, you become tired of waiting.
    They break the political kollationen with the green and start negotiating with Russia.
    They can supply some of the “old and familiar” (Hanhikivi-1) and would like to get influence.
  • Then:
    As the first green Party in Europe, the Greens in Finland see the realities and are in favor of nuclear (2018)
  • Countries who have just freed themselves from Russian domination, will have to go to Russia to extend their energy supply.
  • Turkey, Bangladesh and several other countries also go to Russia to get help.

ANYWAY

  • England began to understand that something had to be done.
    Aparently they were afraid of the usual criticism and did not dare anything, but to go forward with two new reactors:
    EPR also from Areva.
    They will hopefully meet all safety requirements – both real and fictional.
  • Perhaps for fear of being treated like in Germany the supplier required a very high guaranteed price for the electricity to be supplied.
  • Although the price (124 €/MWh) is prohibitively high, it is still less than what is paid for other non-polluting energy.
  • Along with Austria, Greenpeace adopts a case before the European Court and promises to do everything for it to be as expensive and delaied as possible.
  • Due to EU obligations to private capital, China comes into the picture as an investor.

While we wait, so the improper discussion goes on.

AT THE SAME TIME

  • The disastrous delays in Finland is used as proof that nuclear power (always) will require an inordinate amount of construction time.
  • It is sidestepped that in China and Korea comply with schedules – Five years or less.
  • The long negotiation process before you could begin actual work on the UK EPR is counted as “construction” so that everyone can understand how the time for building will eventually be disastrously long.
  • In the meantime China finish their first EPR reactor after nine years. (From first concrete to first power).
    In China nine years is a long time.


China will take over
While we in the West sit and bite our nails the market is taken over by Russia, Korea and China.
Maybe because they have been able to say to Greenpeace and others something like the following:
“Will you please be quiet when you do not know what you’re talking about.”
As senior engineer Kampman said to the “famous” architect Arne Jakobsen.

I sat in the drawing-office and can attest that everything went up in a mess as Kampman died.

MAY BE

  • There are many indications that this very ambitious design (EPR) was not actually worked out before you started. (Critical Path)
  • Apart from a popular demand, there are not many reasons for the many extra / redundant safety measures.
  • At this stage it is difficult to find technical reasons for the desire to utilize existing waste instead of leaving it until one has better knowledge or have a real need to use it.

But no matter what, you have been able to plan a more regular production in Russia, China and Korea.

Demolishing

If the aim is to make it difficult and expensive, then demolishing after use will be a good item.
The hopeles discussions after the German clousure can be compared to the costs in France.

From the big world

nuclear-costs-against-date-of-construction-start It is seen that Russia and China are missing.
Maybe because in a “state economy”, you can not or will not give information about prices.

A very detailed assessment on Alternative Energy/Nuclear Power
explains the large cost-fluctuations between 1975 and 1985
These are reactors that were under construction at the same time as the hysteria after the accident on the Three Mile Island. (1975)

Some countries like the U.S., Canada, Japan and W Germany responded to the Three Mile Island accident by imposing regulations that pushed construction costs through the roof, while France, S Korea and India did not.

zztree
Click at the little square to see how the hysteria influenced the developments in USA but not in France.

zz Kina.png

From the same source, this chart shows that poor countries like Russia, and especially China, have both the resources and the willingness to move forward.

The above about the price development after the accident at Tree Mile Island is confirmed by Vikipedia, which among other things writes:
Large and rapid increases in costs occurred in the 1970s, especially in the United States.
There was no new construction of nuclear reactors between 1979 and 2012 in the United States.

Some loose details

  • The usual rule of thumb for nuclear power is that about two thirds of the generation cost is accounted for by fixed costs: Construction and finansiering.
  • To avoid that an un-planned closure will spread as a domino effect through the network, each device should not have a capacity of more than 10% of what is further online.
  • The average construction period for new reactors starting up in 2015 was 73 months, compared to 127 months of 2014.
  • In Japan and France, construction costs and delays are considerably reduced because of streamlined licensing and certification procedures.
  • Russia has accumulated a large export.
    Probably because they are cheap.
  • From Wikipedia is quoted as follows:
    The price of new plants in China is falling rapidly, approaching
    $ 1500/kW
  • In June 2008 it is estimated that the cost of installing new nuclear capacity in the U.S. might possibly exceed $ 7000/kW in final cost.
    A little more than four times what you can get by with in China.

From another post, also in Wikipedia, is quoted as follows:
The AP1000 is a pressurized water reactor with two cooling loops, planned two produce a net power output of 1117 MW
A design aim was to be less expensive to build than other Generation III Designs.
Using existing technology, and needing less components than competing designs that have three or four cooling loops.
[The EPR has four cooling loops.]
The design decreases the number of components, including pipes, wires, and valves.
Standardization and type-licensing will also help reducing the time and cost of construction.

Because of its simplified design compared to a Westinghouse PWR generation II, the AP1000 has:
—– • 50% Fewer safety-related valves
—– • 35% Fewer pumps
—– • 80% less safety-related piping
—– • 85% less control cable
—– • 45% less seismic building volume
—– • 80% less concrete and reinforcement
The AP1000 design is considerably more compact in land usage than most existing PWRs. [Pressurized Water Reactors]
According to NRC, [U.S. Nuclear Regulatory Commission]
the plants will be orders of magnitude safer than plants in the last study.
The AP1000 will have a maximum core damage frequency of
5 × 10 ^ -7 per plant per year.
Of course, there has been criticism based on alleged safety concerns.
BUT
We are waiting for reality / prices.

The highly successful Korean reactor APR 1400 has, like the AP1000, two independent cooling systems and a calculated Core Damage Frequency less than 10 ^ -5 / year
Corresponding to a return period of 100,000 years
This is less than the very expensive EPR to be built in the UK, also less than the above-mentioned AP1000
For the record I repeat that a core meltdown will in all probability / experience not result in injuries.

Maybe that’s why

From The Energy Collective I quote as follows:
The current policy, which aims to appease public concern rather than educate / explain the radiation has caused that plans for new nuclear power plants has been stifled by unwarranted law-given obstacles and escalating costs, resulting in non-competitive energy prices and increased emissions of CO2.
AND
The natural reaction has been to improve the physical security of reactors further.
Unfortunately, attempts are desperately to applying the wrong solution and thereby drive costs up.
Absolutely no reason.
This is the story of Hinkley C, maybe, that is designed to be safe beyond the limits of what is buildable, economic / objectively necessary.

My conclusion

In conclusion to the above, I would argue that nuclear power has been tricked / forced into a costly security level that far exceeds what is reasonable and what you see / require from other sources of energy.

To avoid misunderstanding, I emphasize that noise damage from wind turbines naturally shoul be included in an assessment of the damage.
In turn, the potential damage from radiation has been wildly exaggerated.

AND THEN

Before calling for and implementing corresponding costly extra safety of other energy sources, the recurring demands for more security at nuclear power can best be described as redundant or rather:
Conscious Devastating.

AND

It is beyond doubt that these demands for costly redundant safety has contributed to the looming climate catastrophe.

.
In my opinion, the problem occurred after a rampant and skillful propaganda where everything just smelling of nuclear or radioactive contamination is done to be a major risk.
See http://wp.me/p1RKWc-mu

What then?

It is easy to be wise after the event. But we must urgently do something to pull the chestnuts out of the fire.
We – what is superficial called the West – We must recognize that the expensive and advanced EPR reactor was a mistake with hopelessly many obsolete and very expensive security measures.
——– If you, my unknown reader, are reluctant to accept the term
——– REDUNDANT SAFETY I ask you to go to another page:
——– (Unnecessary) Safety of Nuclear Power.

OK
Western nuclear is in Deep Troubles.

SO

We – England and others – have to bite the bullet and negotiate with Korea, Russia or China and get help to move on.
For the same money you need to pay the two planned EPR reactors, one can get familiar and proven reactors – with a capacity three times as much.

These “Generation II+ reactors”, that have been exported from Korea, will have a security that far surpasses what you see at other energy sources.
The only serious potential accidents will be in connection with a core meltdown.
Return period for this serious accident is calculated to be 100,000 years.
Far more than the 15,000 years that has been experienced with existing reactors.
Despite all talks, the many existing reactors are running fine.
AND
Even such a core meltdown will in all likelihood / experience not be associated with release of radioactive material and will hardly cause injuries.

What the hell are we waiting for ?

Yes we are waiting for the public to understand that we have been mislead by “The Green”.

englandEnglish translation.
For kilder og henvisninger:
Klik på det der er med gult og se om du får brugbare detaljer.

Og.klik påb Og klik på billeder for at få fuld størrelse.
________________________________________________________________________
Dette forsøg på et indlæg er foranlediget af den uomgængelige kendsgerning at:

Elektricitet er den lettest fordærvelige vare, der findes.

OK
Vi ønsker alle en stabilt og sikker forsyning med El.
Naturligvis ønsker vi det så billigt som rimeligt muligt.

Og vi er vist alle sammen sådan nogenlunde enige om at vi skal gøre vort yderste for at reducere eller helst eliminere vor forurening med CO2 og naturligvis også andet.
Vi kan også blive enige om at der er to, næsten uafhængige, udfordringer:

  • Ustabiliteten i udbud og efterspørgsel.
  • Hvordan skal udbuddet (forsyningen) etableres

Måske har vi tosset rundt mod hinanden fordi vi af gammel vane blander disse to ting sammen.
Lad os prøve at se på Ustabiliteten – Det, er der i realiteten megen enighed om.
Problemer vedrørende transport kommer sådan næsten helt alene.
Problemer i forbindelse med de, heldigvis uhyre sjældne, pludseligt opstående, næsten katastrofale, udfald (med risiko for dominoeffekt)
er heller ikke berørt i det følgende.

Ustabilitet i udbud og efterspørgsel.

Lige meget hvilket system man vælger, skal der på en eller anden måde gribes ind for at opretholde en stabil forsyning.
Dette bliver ikke nemmere når det fremover ønskes at reducere vort udslip af CO2 fra opvarmning, ved at gå ind for brug af elektricitet, naturligvis i forbindelse med varmepumper.
Derudover er det målet at vor forsyning med elektricitet hovedsageligt skal basere sig på Sol og Vind, der naturligvis ikke er vedvarende.

I gamle dage, med kulfyrede kraftværker og lignende, var det ikke så svært at håndtere.
Men det nytter ikke at køre videre med vor forurening. Kul, Olie og meget andet skal naturligvis afvikles.
På grund af det kommende, efterhånden meget sårbare system – uden al den megen CO2 – nærmer vi os langsomt en situation, hvor det næsten gælder:
– – – ”Alle mand til Pumperne”.
Der er mange løsninger, der hver især vil være helt utilstrækkelige, men i forening har vist sig at virke. Men naturligvis kan gøres bedre.

Vi har i hvert fald følgende ”håndtag til at skrue på”:

  • Udveksling med udlandet.
  • Reservekapacitet, der sættes ind, når det er nødvendigt.
  • Ingen politiske begrænsninger i retten til at producere El.
  • Fleksibel prisdannelse.
  • Åbne priser: Alle kan se hvad der er bedst her og nu.

De tre sidste bliver nu kaldt ’Smart Grit’, men er bestemt hverken smart eller virkningsfuldt før det føres ud i livet.
Et Smart Grit kan næppe blive effektivt med mindre de mange eksisterende konkurrenceforvridende ordninger afvikles.

Det bliver svært

Vi skal væk fra gammel vanetænkning.
Her er vi måske uenige: Fri konkurrence eller topstyring?
OK
Den videre udvikling er besværet af over 5000 forskellige patenter.
MEN
Man kan godt. For over 30 år siden var det teknisk muligt at lave det man efterhånden snakker så meget om, men stadigvæk ikke vil gøre – ikke sådan fuldt ud og helt:

Omtrent følgende blev skitseret:

  • Forsynings systemet, det man ofte kalder nettet, fastsætter til enhver tid den øjeblikkelige pris (Spotprisen) for den El, der handles. (Ikke kun ved international handel)
  • Priserne varierer trindvis med en faktor på 1,25 eller ”25 % op eller ned” for hvert trind. (Lille nok til at undgå pludselige ’stød i nettet’)
  • Nogle priser bliver meget lave. Næsten et: ’Bare giv det væk’.
    (Bruges ved overproduktion)
  • Til andre tider kan priserne blive meget høje.
    (Bruges kun i tilfælde af næsten katastrofe)
  • Alle kan købe og sælge uden politiske begrænsninger.
  • Nettet køber El for 80 % af hvad det får for at sælge.
    (Der skal være noget til dækning af omkostninger – både vedligehold og forbedringer)
  • Med god grund argumenteres mod så høje priser at fattige mennesker skal leve uden kraft og varme.
  • Private kan til enhver tid se spotprisen for den El, de køber eller sælger, og kan naturligvis bruge automatik, der udnytter variationer i prisen.
  • Nettet garanterer, indenfor vide grænser, hvor megen tid, der gennemsnitligt vil være spotpriser på de forskellige prisniveauer.
    (Forbrugere og producenter skal have mulighed for at planlægge.
    Delvist)
  • Vejrmeldingen oplyser om forventet pris på El

Derefter vil den menneskelige snilde og opfindsomhed afgøre hvad der eventuelt kan blive gjort. (Gennemregnede eksempler blev fremført)
Naturligvis vil alt blive vejet på en økonomisk vægt, der vil luge alt ukrudtet fra.

Lidt mere i dag

I dag ville man formentligt have tilføjet:

  • Afgift for forurening pålægges forurenerne i forhold til hvor meget CO2 og andet der udledes.
    Således vil fx kulkraft med CCS (Carbon Capture Storage) kunne få en konkurrencemæssig fordel.
    Hvis denne ‘Storage’ kan siges at være vedvarende.
  • Hvis man fra politisk hold ønsker at være ”Mere Grøn” vil det
    ’sådan bare’ være nok at forøge denne afgift.
  • Så længe kvotesystemet opretholdes, bør kvoter for CO2 ikke uddeles som en slags gave til gamle etablerede forurenere, der ’smart nok’ kan sælge og skaffe fortjeneste på grund af gamle synder.
    Kvoter bør således købes, på helt lige vilkår, af slags en CO2-pool. (Ideelt også internationalt)

Politisk favorisering af specielle produktionsformer afvikles så hurtigt som muligt. (Indgåede aftaler skal naturligvis overholdes)

  • Skatter og afgifter fordeles helt ligeligt.
    Ikke per kWh men i forhold til netto betaling.
    (Uden politisk favorisering af specielle produktionsformer men favoriserende den bevidste forbruger.)
  • Konkurrenceforvridning fra gamle regler afvikles – Ikke alt for langsomt.
  • International konkurrenceforvridning skal formentligt imødegås ved kompensationer, der ikke må tage overhånd.
  • Tilskud til forsøg med, og etablering af, nye energiformer skal begrænses og må under ingen omstændigheder udarte til en næsten permanent hovedpude for ineffektivitet.
  • Hold denne diskussion væk fra at diskutere El-biler, Vind og Sol kontra Atomkraft, Bølgeenergi, Biomasse og alt muligt andet.
    Dette er bestemt ikke uvæsentligt at det diskuteres. Men det må ikke ødelægge en fornuftig dialog om denne sag.
  • Den politiske situation vil afgøre om ’Samfundet’ eller ’Nettet’ skal fortsætte med at vedligeholde ekstra reservekapacitet.

Og, hvad egentligt skulle være en selvfølgelighed:

  • Lige vilkår for forskellige kraftkilder.
  • Som allerede omtalt:
    En sammenhængende og logisk vurdering af forurening og dens konsekvenser.
  • Naturligvis stop for at begunstigede energikilder skal have fortrinsret til nettet.
  • Ingen politisk betonede afgifter, som hvor man i Tyskland og Sverige har specielle afgifter på atomkraft.
  • Tilsvarende og rimelige krav om sikkerhed for forskellige energikilder.
  • Ingen politisk motiverede lukning af kraftværker.
  • Ophør af politisk bestemte ordninger hvorved udvalgte kraftkilder får prioritet til nettet.
  • Lange og uopsigelige aftaler, der muliggør langsigtet planlægning og forudsigelige private investeringer.

Den menneskelige og politiske inerti har været stor og er det måske endnu.

Meget mere

Diskussionen om prisfastsættelse er næsten endeløs.
Desværre er meget præget af et forhånd indtaget ønske om at favorisere – – –
Dette er baggrunden for det følgende:
Kraftvarme og Varmepumper.
Hvor meget?
Fjernvarme med atomkraft
Al begyndelse er svær
Der håbes og drømmes
24 – 7
De hjælpsomme, De stabile og De besværlige
En meget gammel nyhed
Bornholm
Den senere udvikling
Kan smart grid redde den fluktuerende vindkraft?
PSO
Fjendtlig indgriben
Det haster
The consequences ?
Where are we heading ?
They write and talk

I Canada prøver man at lægge afgift på CO2

Kraftvarme og Varmepumper

På et meget tidligt tidspunkt gik Danmark forrest og udviklede verdens måske mest effektive kraftvarme, således at spildvarmen fra de mange forslugne kraftværker ikke gik til spilde.

Og nu er tilsammen over 60 % af danske husstande forsynet med forskellige former for fjernvarme. Dette tal er i stigning.

Men meget tyder på at udviklingen er ved at løbe fra denne løsning.
I dag er varmepumper så effektive at de, uden politisk favorisering, vil være en alvorlig konkurrent til fjernvarmen.
En væsentlig grund til dette er at det er meget lettere at fordele elektricitet i ledninger end varme i rør.
Ved ren elproduktion (uden fjernvarme) er det nu muligt at ’vride de sidste kW ud af brændslet’, når elektricitet genereres ved forbrænding på termiske værker. (Man kan få ca. 10 % mere).
Lidt mere ses her.
Men samtidigt vil spildvarmen ikke blive i form af det næsten 100 grader varme vand, der i dag bruges til fjernvarme. I stedet for vil man bare få noget ’lunkent vand’, der ikke egner sig til den gammeldags fjernvarme, men stadigvæk kan udnyttes som varmekilde til varmepumper, til dambrug eller gartneri.
Efterhånden som udviklingen skrider frem, og indtil de gamle fjernvarmerør er udtjent, vil det sikkert være fornuftigt således at bruge elektricitet til varmepumper sammen med det, man vist nok vil kalde ’kold fjernvarme’.

Hvor meget ?

Det har været fremhævet at det foreslåede smart grid vil have megen lille indflydelse.

Så længe det dansk system og det danske forbrugsmønster opretholdes er det rigtigt.

Men med fremtidig opvarmning der hovedsageligt vil være baseret på elektricitet (varmepumper) og transport baseret på el-biler, vil det være muligt at flytte en væsentlig del af forbruget væk fra “madlavnings-spidsen” om aftenen.

Fjernvarme med atomkraft

Hvis tilgængelige oplysninger står til troende og hvis “Nej Nej Nej folket” ikke, som sædvanligt, forkludrer det hele, så vil der være meget at hente ved fjernvarme baseret på kernekraft.
Her vil der ikke blive tale om overskudsvarme fra traditionelle anlæg, men relativt små reaktorer, der kun laver fjernvarme og derfor ikke behøver at operere under (højt) tryk.

Al begyndelse er svær

Det ville være naivt at tro at ’smart grid’ sådan lige med et vil ændre forbrugsmønsteret hos ’den almindelige borger’.

Det vil tage tid og endog politisk mod.
Politikere og embedsmænd skal frigøre sig fra den sidste planøkonomiske vanetænkning.
Producenter skal udvikle automatik til styring, effektive målere og meget andet.
MEN
Lad os komme i gang.
Hvad dælen nøler vi efter?

Der håbes og drømmes

Der drømmes meget.

smart-grid

24 – 7

Ovenstående betragtninger er i realiteten kun gyldige så længe den varierende og delvis uforudsigelige kraft fra sol og vind holder sig til småtingsafdelingen og ikke overskrider 5, måske 10 % af forsyningen.
Solenergi USA påvirker priser
Tysk solkraft variationFra de amerikanske “solskinsstater” har man udtrykket ”The Duck Curve”.
Først ser man hvorledes den store andel af ny solenergi har ødelagt de oprindelige store overskud i 2012.
Dernæst spørger man:
Hvem sørger for backup i de tidlige nattetimer?
Endeligt ses, hvad vi allerede vidste, at i USA er prisdannelsen (delvis) styret af markedskræfter.

I Tyskland, der hovedsageligt satser på solenergi (PV), er situationen mest en fremtidig udfordring.
MEN, med den ønskede udfasning af kulkraft og A-kraft vil det tilsyneladende være umuligt at opretholde forsyningen.
I Tyskland er man samtidigt nået frem til ”The Bureaucracy Monster”:
Fra Der Spiegel October 2013 citeres:
“Men vi skal huske at de Tyske autokrater er nået frem til over 4.000 forskellige tilskudsordninger.
Tilsyneladende efter det princip hvor det der er specielt dyrt skal modtage de mest gavmilde tilskud.”

I England har man taget skridtet fuldt ud og har i januar 2015 afsluttet en udbuds-runde hvorved der skaffes garanteret backup-kapacitet på 49 GW – Hen imod halvdelen af det totale behov for elektricitet.
Resultatet (The Clearing Price) blev: 24 €/kW/år.
Eller 1000 millioner €/år
Dette tilskud gives tilsyneladende til alle vedvarende kraftkilder – Også atomkraft.
Men ikke til de varierende som fx sol og vind.

Dette og meget andet rejser spørgsmålet om hvordan forsyningen skal opretholdes med færrest muligt offentlige indgreb og mest mulig brug af markedskræfterne.

De hjælpsomme, De stabile og
De besværlige

Jeg vil forsøge at nævne udfordringer og mulige løsninger.
De hjælpsomme:
– Forbindelser til udlandet. Nok tilstrækkeligt for Danmark, men ikke for
Tyskland.
Pumped storage, der vil blive urimeligt dyrt.
Flowbatterier, der foreløbigt vil blive meget dyre.
– Reguleret vandkraft, hvor der næppe er nye muligheder.
– Gasturbiner, der naturligvis skal betale for forureningen.
De stabile:
– Almindelig vandkraft, hvor der er meget få nye muligheder.
– A-kraft, der er lagt for had.
– Kulkraft, der naturligvis skal betale for forureningen.
De besværlige:
– Solkraft (PV).
– Vindkraft.

En meget gammel nyhed

På Euractiv.com ser man at NU – i 2016 – er det lykkedes at overføre data via nettet.
Dette skal imidlertid ses i sammenhæng med at man for snart meget længe siden overførte personlige telefon-samtaler, via det fælles højspændings-net, mellem Zambia og fjendelandet Rhodesia.

2019 begynder man at forstå – lidt

Se https://www.energy-supply.dk/article/view/650564/forste_netselskaber_melder_klar_til_fuld_flexafregning

Bornholm

Der er tilsyneladende ved at ske noget:
På Bornholm er et forsøgsprojekt i gang.
Der skrives meget og selv om lidt er bedre end ingenting, må det vist desværre konstateres at det ikke bliver hverken fugl eller fisk før alle producenter af EL bliver underlagt markedsvilkår.

Den senere udvikling

På trods af alle gode hensigter tyder meget på at det europæiske energisystem er i færd med at arbejde sig ind i en blindgyde.
Jeg har forsøgt at samle nogle af de mange data og oplysninger på en anden tråd.
Desværre vil det blive svært at opnå et frit marked for kraft og varme uden at gøre op med årtiers modstand mod kernekraft (atomkraft) og en systematisk dæmonisering.

Kan smart grid redde den fluktuerende vindkraft?

I diskussionen om vindkraftens variation nævnes ofte at man ‘sådan bare’ skal forbinde landene med et stærkt net af højspændingsledninger.
Problemet er behandlet af Sören Kjärsgaard, der giver en meget grundig vurdering af energisituationen, i Europa.
– – – Det er klart, at når du har sagt vindkraft, så må du også sige
– – – back-up.
Kan denne back-up bestå af Europæisk vindkraft der er forbundet med et super smart grid?

På diagrammet på den sidste side fås en vurdering af den samlede vindkrafts variation i følgende lande:
D – GB – F – SP – SE – PL – DK – BE – FI – A – NL – HU – CZ – CH

I dette store landområde varierede vindenergien (2016) mellem
78 000 MW og 4 000 MW (5%)

Svaret vil blive NEJ – Desværre
Selv nok så meget smart grid kan ikke fremtrylle en stabil forsyning.

TILSVARENDE
Hvis man vurderer oplysninger på en “grøn side” fås tilsvarende resultater.

Lidt mere i en diskussion om Batterier

PSO

Diskussionen går videre. For og imod.

Fjendtlig indgriben

En måske uløst udfordring kan være ødelæggelse af systemet ved hjælp af falske signaler, der overføres i hensigt at angribe den danske infrastruktur. (Cyberangreb)
Hvis dette skal imødegås, vil det formentligt være nødvendigt at udelukke øjeblikkelige store ændringer af taksterne og således ikke kunne aflaste systemet ved eventuelt udfald af større enheder.

Det haster

Ved juletid 2016 var der en længere periode med negative priser.

Tak

Tak til Søren Fosberg for opmuntrende ord og forslag til ændringer.
Og til Sören Kjärsgaard for meget grundigt arbejde.

The consequences ?

There are strong arguments for shielding the public from too high prices.

The Energy Collective writes: Solar to Wreck Economics of Existing Power Markets.

The following is a modified extract from a longer article in The Energy Collective 2017 Feb. 15

I have tried to mark the main part of my modifications by using square brackets [ ]

[In USA] electricity is [usually?] treated as a commodity, with no premium brands or user preferences (except in a tiny fraction of the market [as solar and Wind]).
So, in [an absolutely free] electricity market, electricity always sells for exactly the same price as the cost.
This cost will be the costs of the “marginal producer”:
All participants bid their marginal cost (most of it will be fuel cost.)
The bids are accepted starting at the lowest, and all get paid the same price.
It will be that of the last bid accepted.
[Typical textbook economic ?]

[It is my strong opinion, that it will be necessary with some modifications:
If there are say 4 coal plants, it will not be overall economic if one plant should go for start – stop – start and stop again.
Leaving the rest at full time full power.
Of course, it will be more practical to share the necessary fluctuations.]

This works fine in a fossil fuel dominated market.
Market prices will vary slowly, and the market can easily find the right balance between coal (low fuel cost, but higher capital cost) and gas (low capital, but more expensive fuel).

But when grids are dominated by renewables and nuclear, the suppliers will always [start to] bid near zero, so market prices will swing wildly back and forth between near zero prices and scarcity pricing.

The scarcity price is the price needed to make a substantial numbers of users turn off the heating or air conditioning.
It [will be] a high price.

[The “near zero prices” will be the actual price, when the economy of the renewables is destroyed by the oversupply by the combination of renewables and nuclear.]

Scarcity pricing [it will happen when the nuclear has no competition from renewables.]
It has to occur for enough hours of the year for all suppliers [nuclear ?] to make enough profit margin to cover their fixed costs.

Of course scarcity pricing does not work if users are shielded from high prices.
[But, without government interference,] the system will result in poor people being unable to afford winter heat or summer air conditioning.

Carbon Tax

Where are we heading ?

Without having studied economics, I dare to draw the following conclusions:

  • Without special subsidies or taxes, energy from sun and wind will have no chance to survive together with “adequate capacity of nuclear”.
    Assuming a 100 % liberal (capitalistic) market.
  • Without heavy taxation placed on pollution, energy from renewables will not survive in an open market together with energy from coal.
  • In order to avoid Xenon-poisoning and an accident as at Chernobyl, nuclear can not just ramp up and down if it should act as backup for the unstable power from sun and wind.
    On the other hand, nuclear can easily manage the slow and predictable changes in the demand.
  • There will be an enormous wish for storage of energy.
    BUT
    Given this enormous demand for storage, it will be almost impossible.

Of course it is not enough to point to difficulties. We must search for solutions.

For me there is only one answer: Nuclear.

They write and talk
BUT

On EnergyPost.eu we see something.
How electricity will be priced in the future

Why the Standard Model of Future Energy Supply Doesn’t Work
Too often, wind or solar is added to the system in a way that overlooks the real cost of buffering.
Coal and nuclear electricity production find themselves with the unpaid job of providing buffering services for wind and solar.
The net impact of adding intermittent renewables is that they push necessary backup power out of business.
We end up with an electrical system that is worse off for adding intermittent renewables, even though this was not the intent of those requiring the use of such generation.

Dynamic Electricity Pricing